Nuclear Regulatory Commission

- (1) American Board of Health Physics in Comprehensive Health Physics;
 - (2) American Board of Radiology;
- (3) American Board of Nuclear Medicine:
- (4) American Board of Science in Nuclear Medicine:
- (5) Board of Pharmaceutical Specialties in Nuclear Pharmacy;
- (6) American Board of Medical Physics in radiation oncology physics;
- (7) Royal College of Physicians and Surgeons of Canada in nuclear medicine:
- (8) American Osteopathic Board of Radiology; or
- (9) American Osteopathic Board of Nuclear Medicine; or
- (b) Has had classroom and laboratory training and experience as follows—
- (1) 200 hours of classroom and laboratory training that includes—
- (i) Radiation physics and instrumentation;
 - (ii) Radiation protection;
- (iii) Mathematics pertaining to the use and measurement of radioactivity:
- (iv) Radiation biology; and
- (v) Radiopharmaceutical chemistry; and
- (2) One year of full time experience as a radiation safety technologist at a medical institution under the supervision of the individual identified as the Radiation Safety Officer on a Commission or Agreement State license that authorizes the medical use of byproduct material; or
- (c) Is an authorized user identified on the licensee's license.

§35.910 Training for uptake, dilution, and excretion studies.

Except as provided in §35.57, the licensee shall require the authorized user of a radiopharmaceutical in §35.100(a) to be a physician who—

- (a) Is certified in-
- (1) Nuclear medicine by the American Board of Nuclear Medicine;
- (2) Diagnostic radiology by the American Board of Radiology;
- (3) Diagnostic radiology or radiology by the American Osteopathic Board of Radiology;
- (4) Nuclear medicine by the Royal College of Physicians and Surgeons of Canada; or

- (5) American Osteopathic Board of Nuclear Medicine in nuclear medicine; or
- (b) Has had classroom and laboratory training in basic radioisotope handling techniques applicable to the use of prepared radiopharmaceuticals, and supervised clinical experience as follows—
- (1) 40 hours of classroom and laboratory training that includes—
- (i) Radiation physics and instrumentation:
 - (ii) Radiation protection;
- (iii) Mathematics pertaining to the use and measurement of radioactivity;
- (iv) Radiation biology; and
- (v) Radiopharmaceutical chemistry; and
- (2) 20 hours of supervised clinical experience under the supervision of an authorized user and that includes—
- (i) Examining patients or human research subjects and reviewing their case histories to determine their suitability for radioisotope diagnosis, limitations, or contraindications;
- (ii) Selecting the suitable radiopharmaceuticals and calculating and measuring the dosages;
- (iii) Administering dosages to patients or human research subjects and using syringe radiation shields;
- (iv) Collaborating with the authorized user in the interpretation of radioisotope test results; and
- (v) Patient or human research subject follow up; or
- (c) Has successfully completed a 6-month training program in nuclear medicine as part of a training program that has been approved by the Accreditation Council for Graduate Medical Education and that included classroom and laboratory training, work experience, and supervised clinical experience in all the topics identified in paragraph (b) of this section.

§ 35.920 Training for imaging and localization studies.

Except as provided in §35.57, the licensee shall require the authorized user of a radiopharmaceutical, generator, or reagent kit in §35.200(a) to be a physician who—

- (a) Is certified in—
- (1) Nuclear medicine by the American Board of Nuclear Medicine;